
Target Support Package™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Target Support Package™ User’s Guide

© COPYRIGHT 2009–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2009 Online only New for Version 4.0 (Release 2009b)
March 2010 Online only Revised for Version 4.1 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2
Product Description . 1-2
Key Features . 1-2

Using this Guide . 1-4
Expected Background . 1-5

Preparing Models for Embedded Deployment

2
Setting Target Preferences . 2-2
What are Target Preferences Blocks? 2-2
Locating a Target Preferences Block 2-3
Configuring a Target Preferences Block for a Supported
Processor . 2-3

Adding a Target Preferences Block to Your Model 2-4
Examples of Configuring Target Preferences 2-5

Setting Configuration Parameters for Embedded IDE
Link . 2-6
What are Configuration Parameters? 2-6
Setting Model Configuration Parameters 2-6

Working with Block Libraries . 2-15

Simulink Models and Targeting . 2-16
Creating Your Simulink Model for Targeting 2-16
Blocks to Avoid in Your Models . 2-17

iii

Supported Operating Systems

3
Overview . 3-2

Preparing Models to Run on Windows or Linux 3-3

Selecting the Operating System and Scheduling
Mode . 3-5

Linux-Specific Topics . 3-6
Scheduling . 3-6
Running Multirate Multitasking Executables on the Linux
Development System . 3-6

Avoiding Lock-Up in Free-Running Multi-Rate
Multi-Tasking Models . 3-8

Embedded Linux-Specific Topics . 3-9
Troubleshooting “sched_setaffinity: Bad address” Error . . 3-9

Windows-Specific Topics . 3-10
Scheduling . 3-10

Block Reference

4
Host CAN Blocks (canmsglib) . 4-2

Host Communication (hostcommlib) 4-3

iv Contents

Blocks — Alphabetical List

5

Index

v

vi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Using this Guide” on page 1-4

1 Getting Started

Product Overview

In this section...

“Product Description” on page 1-2

“Key Features” on page 1-2

Product Description
Target Support Package™ lets you deploy code generated from
MathWorks products for real-time execution on embedded microprocessors,
microcontrollers, and DSPs. Using Target Support Package, you can integrate
peripheral devices and real-time operating systems with the algorithms
created using Simulink® models, Stateflow® charts, and the Embedded
MATLAB™ language subset without writing low level drivers and runtime
code. The resulting executable can be deployed onto embedded hardware
for on-target rapid prototyping, real-time performance analysis, and field
production.

Key Features

• Provides fully integrated turnkey solution to build complete executable
from generated code that includes device drivers and scheduler for
real-time execution on embedded processors

• Includes target-specific code and blocks for analog I/O, digital I/O, pulse
width modulation, waveform measurement, Serial communication, CAN,
and more

• Provides code and blocks for multi-tasking scheduling using synchronous
and asynchronous tasks, task preemption, and temporary task overruns

• Enables interactive parameter tuning and monitoring of real-time
applications using Simulink external mode

• Provides specialized block libraries for Ethernet host and target
communication

• Provides optimized assembly code and blocks for Texas Instruments signal
processing, IQMath, and Digital Motor Control libraries

1-2

Product Overview

• Supports processor families including Analog Devices Blackfin®,
Freescale™ MPC5xx, Infineon® C166®, Texas Instruments
C2000™/C5000™/C6000™

1-3

1 Getting Started

Using this Guide
The Target Support Package™ product supports with a number of target
processor families and target operating systems. The structure of this
documentation provides general product information, and information that
applies to specific targets.

Note It is important for you to understand the documentation structure so
you can find both the general and the specific information you need.

In the online help for the Target Support Package product, the Getting
Started and User Guide sections provide general information.
Target-specific information is located in the Supported Processors sections.

Four of the six sections under Supported Processors contain documentation
for previous stand-alone products. They are:

• For Freescale MPC5xx used to be the documentation for Target Support
Package FM5.

• For Infineon C166 used to be the documentation for Target Support
Package IC1

1-4

Using this Guide

• For Texas Instruments C2000 used to be the documentation for Target
Support Package TC2

• For Texas Instruments C6000 used to be the documentation for Target
Support Package TC6

We are in the process of refactoring these four sections.

Expected Background
To get the most out of this manual, you should be familiar with MATLAB®

software and its associated programs, such as Signal Processing Blockset™
software and Simulink® software. We do not discuss details of digital signal
processor operations and applications, except to introduce concepts related to
using specific targets. For more information about digital signal processing,
you may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE® Press, 1997.

• Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

• Mitra, S. K., Digital Signal Processing — A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

• Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley
Publishing Company, 1996.

Refer to the third-party documentation for your hardware and IDEs for
information about setting them up and using them.

1-5

1 Getting Started

1-6

2

Preparing Models for
Embedded Deployment

• “Setting Target Preferences” on page 2-2

• “Setting Configuration Parameters for Embedded IDE Link” on page 2-6

• “Working with Block Libraries” on page 2-15

• “Simulink Models and Targeting” on page 2-16

2 Preparing Models for Embedded Deployment

Setting Target Preferences

In this section...

“What are Target Preferences Blocks?” on page 2-2

“Locating a Target Preferences Block” on page 2-3

“Configuring a Target Preferences Block for a Supported Processor” on
page 2-3

“Adding a Target Preferences Block to Your Model” on page 2-4

“Examples of Configuring Target Preferences” on page 2-5

The following IDE’s and processor families use target preferences blocks. The
information in this section applies to them:

• Texas Instruments Code Composer Studio™, C2000™, C5000™, and
C6000™

• Analog Devices VisualDSP++®, and Blackfin®

• Eclipse™ IDE

• Green Hills MULTI®

The following IDE’s and processor families do not use target preferences
blocks:

• Freescale MPC5xx

• Altium TASKING®

• Infineon C166®

The information in this section does not apply to them.

What are Target Preferences Blocks?
A target preferences block describes the environment for which you are
generating code. The block includes information about the processor,
hardware settings, operating system, memory mapping, and code generation

2-2

Setting Target Preferences

features. The Real-Time Workshop, Embedded IDE Link, and Simulink
products use this information to generate code from your model.

Locating a Target Preferences Block
Target preferences blocks are located in:

• The Target Support Package block libraries for Supported Processors.

• The Embedded IDE Link™ block libraries for Supported IDEs.

To find a target preferences block:

• Use the search feature in the Simulink Library Browser.

• Browse the block libraries for your processor or IDE.

You can identify a target preference block by its board icon and label. The
label includes the processor name or “Custom Board”. For example:

Configuring a Target Preferences Block for a
Supported Processor
Before you can generate code for a model, your model must contain a target
preferences (TP) block.

If you are using a supported processor, and a preconfigured TP block is not
available from Target Support Package block libraries, configure a TP block
for your processor.

To configure a TP block for a supported processor:

1 Open the block library for your IDE.

2 Copy the Custom Board block to your model.

2-3

2 Preparing Models for Embedded Deployment

3 Open the Custom Board block.

4 Select your target processor from the Processor parameter, verify the
default settings, and click OK. This action imports the appropriate default
settings and applies them to the model.

5 In your model, edit the label of the TP block with the name of your
processor.

To make reusing the TP block easier:

1 In your model, select File > New > Library.

2 Copy your new TP block to the library.

3 Save the library in your default Current Folder in MATLAB.

When you need the block again, open the library by entering the library name
on the MATLAB command line.

Adding a Target Preferences Block to Your Model
Before you can generate code for a model, your model must contain a target
preferences (TP) block.

To add a TP block to your model:

1 Copy a TP block from a block library to your model, or create one, as
described in “Configuring a Target Preferences Block for a Supported
Processor” on page 2-3.

2 Click Yes if you get a dialog box that asks whether to “set the model
configuration parameters to the default values”. For example:

2-4

Setting Target Preferences

This action applies the appropriate default settings for your IDE and
processor to the Configuration Parameters dialog box.

Clicking No dismisses the dialog box and does not set the parameters. If
the configuration parameters are incorrect, the software will generate error
messages when you generate code . For more information, see “Setting
Configuration Parameters for Embedded IDE Link” on page 2-6.

3 Open the TP block, verify the default settings, and click OK. This action
applies the appropriate default settings to the model.

Note Your model must contain only one TP block.

Other tips for using TP blocks:

• The TP block stands alone. It does not connect to other blocks.

• To generate code for a model, place the TP block at the top level of your
model.

• To generate code for a subsystem, place the TP block at the subsystem
level of your model.

• For detailed information about the TP block parameters, see Target
Preferences/Custom Board.

Examples of Configuring Target Preferences
There is no generic procedure for configuring a target preferences block.
Setting the Processor parameter applies the appropriate default for a
specific processor.

You typically reconfigure TP to achieve a specific purpose. For example:

• “Configuring a Target Preferences Block for a Supported Processor” on
page 2-3

• “Generating Code for Any C64x+™ Processor or Board”

2-5

2 Preparing Models for Embedded Deployment

Setting Configuration Parameters for Embedded IDE Link

In this section...

“What are Configuration Parameters?” on page 2-6

“Setting Model Configuration Parameters” on page 2-6

What are Configuration Parameters?
The Configuration Parameters dialog box specifies the settings for a
model’s active configuration set. These parameters determine the type of
solver used, import and export settings, and other values that determine how
the model runs. See Configuration Sets for more information.

To display the dialog box, select Simulation > Configuration Parameters
in the Model Editor, or press Ctrl+E. The dialog box appears.

For comprehensive information about configuration parameters in Simulink
see, “Configuration Parameters Dialog Box”

Setting Model Configuration Parameters
The Embedded IDE Link software sets the appropriate default values for your
processor and IDE when you drop a target preferences block in your model
and click Yes in response to dialog box that asks whether to “set the model
configuration parameters to the default values”. For example:

2-6

Setting Configuration Parameters for Embedded IDE Link™

The following subsections provides a quick overview of the panes and
parameters you are most with which you are most likely to interact.

efer to “About the TLC Debugger” in your Real-Time Workshop processor
Language Compiler documentation.

Note The following subtopics assume you’ve added a target preferences block
to your model and accepted the default values.

Real-Time Workshop Pane
The default System target file is idelink_ert.tlc. When you select
idelink_ert.tlc or idelink_grt.tlc, the dialog box displays a new pane
for Embedded IDE Link at the bottom of the select tree.

2-7

2 Preparing Models for Embedded Deployment

To use Real-Time Workshop® Embedded Coder™ software or the
Processor-in-the-Loop feature, leave System target file set to
idelink_ert.tlc.

Disregard the Build process options. Embedded IDE Link software does
not use makefiles to generate code. Code generation is project based so the
options in this group do not apply.

Note Embedded IDE Link software has a separate feature that automatically
generates makefiles, which you can use to build applications with your
software development toolchain. For more information, see Generating
Makefiles.

If you generate code from a model that uses custom storage classes (CSC),
leave Ignore custom storage classes unselected.

2-8

Setting Configuration Parameters for Embedded IDE Link™

To use a system target file that does not support CSCs, such as
idelink_grt.tlc, without reconfiguring your parameter and signal objects,
select Ignore custom storage classes. When you select Ignore custom
storage classes:

• The software treats objects with CSCs as if you set their storage class
attribute to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Embedded IDE Link Pane Parameters
On the select tree, the Embedded IDE Link entry provides options in these
areas:

• Run-Time— Set options for run-time operations, like the build action

• Project Options— Set build options for your project code generation

• Code Generation— Configure your code generation requirements

• Link Automation — Export an IDE handle object, such as IDE_Obj, to
your MATLAB workspace

• Diagnostic options — Determine how the code generation process
responds when you use source code replacement, either in the Target
Preferences block Board custom code options, or in the Real-Time
Workshop® Custom Code options in the configuration parameters.

For more information, see Embedded IDE Link Users Guide .

Build format. Select Project to build a project for your IDE, or select
Makefile to generate a makefile for your development tool chain.

For more information, see Build Format.

Build action. Your selection for Build action determines what happens
when you click Build or press Ctrl+B. Your selection tells Real-Time
Workshop software when to stop the code generation and build process.

2-9

2 Preparing Models for Embedded Deployment

To run your model on the processor, select Build_and_execute. This selection
is the default build action; Real-Time Workshop software automatically
downloads and runs the model on your board.

The actions are cumulative—each listed action adds features to the previous
action on the list and includes all the previous features.

If you set Build format to Project, select one of the following options:

• Create_Project — Directs Real-Time Workshop software to start the
IDE and populate a new project with the files from the build process. This
option offers a convenient way to build projects in the IDE.

• Archive_library— Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your the IDE projects for models that you use in model referencing.

• Build— Builds the executable COFF file, but does not download the file
to the processor.

• Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your processor.

• Create_processor_in_the_loop_project — Directs the Real-Time
Workshop code generation process to create PIL algorithm object code as
part of the project build.

If you set Build format to Makefile, select one of the following options:

• Create_makefile — Creates a makefile.

• Archive_library— Creates a makefile and an archive library.

• Build — Creates a makefile and an executable.

• Build_and_execute — Creates a makefile and an executable. Then it
evaluates the execute instruction in the current configuration. For more
information, see Execute.

2-10

Setting Configuration Parameters for Embedded IDE Link™

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically. You do
not need to reset the board before building models.

For more information, see Build action.

Overrun notification. To enable the overrun indicator, choose one of three
ways for the processor to respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling the
custom function you identify in Function name.

For more information, see “Overrun notification”.

Function name. When you select Call_custom_function from the Overrun
notification list, you enable this option. Enter the name of the function the
processor should use to notify you that an overrun condition occurred. The
function must exist in your code on the processor.

For more information, see “Function name”.

Configuration. The Configuration parameter defines sets of build options
that apply to all of the files generated from your model.

The Release and Debug option apply build settings that are defined by your
IDE. For more information, refer to your IDE documentation.

Custom has the same default values as Release, but:

• Leaves Compiler options string empty and s

• Specifies a memory model that uses Far Aggregate for data and Far for
functions.

2-11

2 Preparing Models for Embedded Deployment

For more information, see “Configuration”.

Compiler options string. To determine the degree of optimization provided
by the optimizing compiler, enter the optimization level to apply to files
in your project. For details about the compiler options, refer to your IDE
documentation. When you create new projects, Embedded IDE Link does not
set any optimization flags.

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

For more information, see “Compiler options string”.

Linker options string. To specify the options provided by the linker during
link time, you enter the linker options as a string. For details about the linker
options, refer to your IDE documentation. When you create new projects,
Embedded IDE Link does not set any linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

For more information, see “Linker options string”.

System stack size (MAUs). Enter the amount of memory to use for the
stack. For more information, refer to Enable local block outputs on the
Optimization pane of the Configuration Parameters dialog box. Block output
buffers are placed on the stack until the stack memory is fully allocated.
After that, the output buffers go in global memory. Also refer to the online
Help system for more information about Real-Time Workshop options for
configuring and building models and generating code.

For more information, see “System stack size (MAUs)”.

System heap size (MAUs). Enter the amount of memory to use for the heap.

For more information, see “System heap size (MAUs)”.

2-12

Setting Configuration Parameters for Embedded IDE Link™

Profile real-time execution. To enable the real-time execution profile
capability, select Profile real-time execution. With this selected, the build
process instruments your code to provide performance profiling at the task
level or for atomic subsystems. When you run your code, the executed code
reports the profiling information in an HTML report.

For more information, see “Profile real-time execution”.

Link Automation. When you use Real-Time Workshop to build a model
for a processor, Embedded IDE Link makes a connection between MATLAB
software and the IDE.

Constructors create objects that reference the link between the IDE and
MATLAB. Link automation refers to the same object, named IDE_Obj in the
function reference pages.

Although IDE_Obj is a bridge to a specific instance of the IDE, it is an object
that contains information about the IDE instance it refers to, such as the
board and processor it accesses. In this pane, the Export IDE link handle
to base workspace option lets you instruct Embedded IDE Link to export
the object to your MATLAB workspace, giving it the name you assign in IDE
link handle name.

Maximum time allowed to build project (s). Specifies how long the
software waits for the IDE to build the software.

For more information, see “Maximum time allowed to build project (s)”.

Maximum time allowed to complete IDE operations (s). Specifies how
long the software waits for IDE functions, such as read or write, to return
completion messages.

For more information, see “Maximum time allowed to complete IDE
operations (s)”.

Export IDE link handle to base workspace. Directs the software to
export the IDE_Obj object to your MATLAB workspace.

For more information, see “Export IDE link handle to base workspace”.

2-13

2 Preparing Models for Embedded Deployment

IDE link handle name. Specifies the name of the IDE_Obj object that the
build process creates.

For more information, see “IDE link handle name”.

Source file replacement. Selects the diagnostic action to take if the
software detects conflicts when you replace source code with custom code.
The diagnostic message responds to both source file replacement in the
Embedded IDE Link parameters and in the Real-Time Workshop Custom
code parameters in the configuration parameters for your model.

The following settings define the messages you see and how the code
generation process responds:

• none— Does not generate warnings or errors when it finds conflicts.

• warning— Displays a warning. warn is the default value.

• error— Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects
custom code replacement problems. You see warning messages as the build
progresses

Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files. Use none when the replacement process is
correct and you do not want to see multiple messages during your build.

For more information, see “Source file replacement”.

2-14

Working with Block Libraries

Working with Block Libraries
For general information about working with block libraries in Simulink, see
“Working with Block Libraries”.

2-15

2 Preparing Models for Embedded Deployment

Simulink Models and Targeting

In this section...

“Creating Your Simulink Model for Targeting” on page 2-16

“Blocks to Avoid in Your Models” on page 2-17

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the Signal Processing Blockset software

• Use other Simulink discrete-time blocks

• Use the blocks provided for your processor family

• Use blocks that provide the functions you need from any blockset installed
on your computer

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF
file format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

2-16

Simulink® Models and Targeting

Blocks to Avoid in Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
All blocks generate code, but they do not work in the generated code as they
do on your desktop.

You avoid using certain blocks, such as the Scope block and some source and
sink blocks, in Simulink models that you use on Target Support Package
targets. These blocks waste time in the generated code waiting to send or
receive data from your MATLAB workspace, slowing your signal processing
application without adding instrumentation value.

The following table describes blocks you should not use in your target models.

Block
Name/Category Library Description

Scope Simulink, Signal
Processing
Blockset software

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

Spectrum Scope Signal Processing
Blockset

Compute and display the
short-time FFT of a signal.
It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to
Workspace

Signal Processing
Blockset

Send data to your MATLAB
workspace.

2-17

2 Preparing Models for Embedded Deployment

Block
Name/Category Library Description

Signal To
Workspace

Signal Processing
Blockset

Send a signal to your MATLAB
workspace.

Signal From
Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

To Wave device Signal Processing
Blockset

Send data to a .wav device.

From Wave device Signal Processing
Blockset

Get data from a .wav device.

In general, using blocks to add instrumentation to your application is
a valuable tool. In most cases, blocks you add to your model to display results
or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

2-18

3

Supported Operating
Systems

• “Overview” on page 3-2

• “Preparing Models to Run on Windows or Linux” on page 3-3

• “Selecting the Operating System and Scheduling Mode” on page 3-5

• “Linux-Specific Topics” on page 3-6

• “Embedded Linux-Specific Topics” on page 3-9

• “Windows-Specific Topics” on page 3-10

3 Supported Operating Systems

Overview
You can build executables that run on Intel® x86 and Athlon/K5/K6 processors
running Windows® and Linux®. For example, you can build executables and
run them on your host development system or on a target operating system
with the appropriate hardware and operating system.

If you are using MontaVista Linux Pro, you can also build executables that
run on ARM® target processors running Embedded Linux. For example, you
can build executables for the Texas Instruments™ TMS320DM355 DVEVM,

3-2

Preparing Models to Run on Windows® or Linux®

Preparing Models to Run on Windows or Linux
To build an executable that runs on Windows and Linux, perform the
following steps:

1 Install and configure Eclipse IDE according to the instructions in “Getting
Started” section of the Embedded IDE Link User’s Guide for Use with
Eclipse IDE.

Note To run the executable on a remote target system, such as an ARM
processor, also perform the steps in “Additional Configuration Steps to Run
Your Executable on a Remote Linux Target”.

2 Enter idelinklib_eclipseide at the MATLAB prompt. This action opens
the Embedded IDE Link/Supported IDEs/Eclipse IDE library.

3 Copy the Custom Board for Eclipse IDE target preferences block to
your model.

4 Click Yes in response to the Initialize Configuration Parameters
dialog box.

5 Open the Custom Board for Eclipse IDE block, and set Processor to
match the target processor. For example:

• To run generated code on your host system, set Processor to Intel
x86/Pentium or AMD K5/K6/Athlon.

• To run generated code on a target system with an ARM processor, set
Processor to one of the ARM processors.

6 Set Operating System to None or to the operating system on which you
will be running the executable: Windows, or Linux. For example, if your
host/development system is running Linux, set Operating System to
None or Linux.

• Selecting Windows creates a Windows tab, which you can use to set
Scheduling Mode.

3-3

3 Supported Operating Systems

• Selecting Linux creates a Linux tab, which you can use to set
Scheduling Mode and Base Rate Priority.

7 Set the Scheduling Mode to one of these options:

• If you select real-time, the model uses a timer to trigger the base rate
at regular periods.

• If you select free-running, the model does not use a timer. It completes
each process or thread before running the next one.

8 For Linux, you can set the Base Rate Priority relative to other processes
and threads. You can enter values from (the number of rates + 1) to 99.

9 In Embedded IDE Link, configure the model to build and execute:

a In the model, select Simulation > Configuration Parameters.

b Select the Real-Time Workshop > Embedded IDE Link pane.

c Set Build action to Build and execute.

10 Build the model. Select Tools > Real-Time Workshop > Build Model.

After the build completes, Embedded IDE Link software downloads the
executable to the remote system and runs it.

3-4

Selecting the Operating System and Scheduling Mode

Selecting the Operating System and Scheduling Mode
The following table refers to the Operating System and Scheduling Mode
options in the Custom Board for Eclipse IDE target preferences block.

Operating
System

Scheduling
Mode

Behavior

Windows or
Linux

free_running The model generates multi-threaded
free-running code. Each rate in the
model maps to a separate thread in
the generated code. Multi-threaded
code can potentially run faster than
single threaded code.

Windows or
Linux

real_time The model generates multi-threaded
real-time code: Each rate in the
Simulink model runs at the rate
specified in the model. For example, a
1-second rate runs at exactly 1-second
intervals. The timing is provided by
using a Linux real-time clock.

None Not applicable The model generates free-running
code that runs in an infinite while
loop with no timing.

For more information, see “Scheduling Considerations” in the Real-Time
Workshop User’s Guide.

3-5

3 Supported Operating Systems

Linux-Specific Topics

In this section...

“Scheduling” on page 3-6

“Running Multirate Multitasking Executables on the Linux Development
System” on page 3-6

“Avoiding Lock-Up in Free-Running Multi-Rate Multi-Tasking Models”
on page 3-8

Scheduling
The base rate in the model maps to a thread and runs as fast as possible. The
base rate priority selection in the OS tab allows you to set a static priority
for the base rate task. By default, this rate is 40.

The process running single-tasking models has Default scheduling policy
when model is single-tasking or there is a single rate in the model. Static
priority of the process is 0 in this case.

Running Multirate Multitasking Executables on the
Linux Development System
On Linux, multirate multitasking executables require root privileges to
schedule POSIX threads with real-time priority. For Eclipse IDE to run the
multirate multitasking executable with root privileges locally on your Linux
development system, Eclipse IDE must have root privileges.

If all three of the following conditions are true, start Eclipse IDE with root
privileges:

• Your model produces a multirate multitasking executable.

• Embedded IDE Link is using the default configuration parameters which
automatically run the executable. (In Configuration Parameters, under
Real-Time Workshop > Embedded IDE Link, Build format is Project
and Build action is Build_and_execute.)

3-6

Linux®-Specific Topics

• The Eclipse plug-in is using the default settings, which run the executable
on the local Linux development system. (During the eclipseidesetup
process, you left Site set to local.)

If any of the following conditions are true, you do not need to start Eclipse
IDE with root privileges:

• Your model produces multirate single-tasking executables or single rate
executables.

• You are performing a proccesor-in-the-loop (PIL) simulation.

• You are using a Windows development platform.

• You have configured Embedded IDE Link and Eclipse to run the executable
on a remote Linux target.

• You not have configured Embedded IDE Link and Eclipse to run the
executable.

Starting Eclipse IDE with root privileges

1 Install and configure Eclipse IDE according to the instructions in “Getting
Started” section of the Embedded IDE Link User’s Guide for Use with
Eclipse IDE.

Note To automatically build and run the executable on a remote Linux
target, such as an ARM processor, also perform the steps described in
“Additional Configuration Steps to Run Your Executable on a Remote
Linux Target”.

2 If an Eclipse IDE handle object exists in the MATLAB workspace, delete
the object. For example, delete IDE_Obj.

3 If Eclipse IDE is running, close it.

4 Open a command-line session and cd to the Eclipse installation folder. For
example, if you installed Eclipse in usr/bin/eclipse, enter:

cd usr/bin/eclipse

3-7

3 Supported Operating Systems

5 Start Eclipse with root privileges using sudo ./. For example:

sudo ./eclipse

6 When prompted, enter the root password.

7 When Eclipse starts and prompts you for the workspace, enter the same
workspace you specified during the Eclipse installation and configuration
process.

8 In Embedded IDE Link, configure the model to build and execute:

a In the model, select Simulation > Configuration Parameters.

b Select the Real-Time Workshop > Embedded IDE Link pane.

c Set Build action to Build and execute.

9 Build the model. Select Tools > Real-Time Workshop > Build Model.

When the build process finishes, the multirate multitasking executable
automatically starts and runs with root privileges.

Avoiding Lock-Up in Free-Running Multi-Rate
Multi-Tasking Models
Use caution if you select free-running mode for a multi-rate multi-tasking
models. Because of the Rate Monotonic Scheduling requirement in Linux, the
scheduler runs threads with a SCHED_FIFO scheduling policy. A process
scheduled with SCHED_FIFO prevents other process from running while it
is ready to run. Therefore, if there are no blocking peripherals in the model,
the entire Linux system can become unresponsive while you are running the
generated code. Even the shell window will be preempted from running. To
avoid this kind of lock-up, apply one of the following solutions:

• Set Scheduling Mode to real_time.

• Include a blocking device driver, such as a UDP block, in your model that
suspends running thread while data is not available.

• Raise the shell window priority above the base rate priority so you can kill
the process running with SCHED_FIFO class.

3-8

Embedded Linux®-Specific Topics

Embedded Linux-Specific Topics

Troubleshooting “sched_setaffinity: Bad address”
Error
If the libc versions used on the host to build the executable do not match those
used on the target to run the executable. When you build the model, the
application terminates immediately with the following error:

starting the model
Call to sched_setaffinity returned error status (-1).
sched_setaffinity: Bad addres

To work around this problem, you can add -static to the linker options.
However, linking the libraries statically increases the size of the executable.
To configure the linker options, complete the following steps:

1 Press Ctrl+E to open the model configuration parameters.

2 Select Real-Time Workshop > Embedded IDE Link.

3 Add -static to the Linker options string.

To solve this problem, update the development and target software so they
match. For example, in the case of the TMS320DM355 DVEVM, see the
“Installing the Software” topic in Texas Instruments TMS320DM355 DVEVM
Getting Started Guide, literature number SPRUF73.

3-9

3 Supported Operating Systems

Windows-Specific Topics

Scheduling
The base rate in the model is mapped to a thread and runs as fast as possible.
In Windows target, the timer resolution is 1 ms. The base rate priority
selection in the OS tab allows you to set a static priority for the base rate task.
The Windows OS does not have a selection; the default base rate priority is
set to THREAD_PRIORITY_HIGHEST (10) and the process running the
generated code has NORMAL_PRIORITY_CLASS.

The process running single-tasking models has Default scheduling policy
when model is single-tasking or there is a single rate in the model. Static
priority of the process is 0 in this case.

3-10

4

Block Reference

Host CAN Blocks (canmsglib) (p. 4-2) Target preference blocks for target
boards

Host Communication (hostcommlib)
(p. 4-3)

Target preference blocks for target
boards

4 Block Reference

Host CAN Blocks (canmsglib)

CAN Pack Pack individual signals into CAN
message

CAN Unpack Unpack individual signals from CAN
messages

4-2

Host Communication (hostcommlib)

Host Communication (hostcommlib)
Byte Pack Convert input signals to uint8

vector

Byte Reversal Reverse order of bytes in input word

Byte Unpack Unpack UDP uint8 input vector into
Simulink data type values

UDP Receive Receive UDP packet

UDP Send Send UDP message

4-3

4 Block Reference

4-4

5

Blocks — Alphabetical List

Byte Pack

Purpose Convert input signals to uint8 vector

Library Host Communication (hostcommlib)

Description Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using
the UDP protocol.

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block always has at least one input port and
only one output port.

5-2

Byte Pack

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of
the alignment value. The alignment algorithm ensures that each
element in the output vector begins on a byte boundary specified
by the alignment value. Byte alignment sets the boundaries
relative to the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
with no holes between any data types for any combination of data
types and signals.

Sometimes, you can have multiple data types of varying lengths. In such
cases, specifying a 2-byte alignment can produce 1–byte gaps between
uint8 or int8 values and another data type. In the pack implementation,
the block copies data to the output data buffer 1 byte at a time. You can
specify any of the data alignment options with any of the data types.

Example Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

5-3

Byte Pack

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and
single. With this information, the block automatically provides the
proper number of input ports.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:

{'uint32','uint32','uint16','double','uint8','double','single'}

When the signals are scalar values (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

See Also Byte Reversal, Byte Unpack

5-4

Byte Reversal

Purpose Reverse order of bytes in input word

Library Host Communication (hostcommlib)

Description Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel processors that
are little endian and others that are big endian. Texas Instruments
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

Dialog
Box

Number of inputs
Specify the number of input ports for the block. The number of
input ports adjusts automatically to match value so the number of
outputs equals the number of inputs.

5-5

Byte Reversal

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

See Also Byte Pack, Byte Unpack

5-6

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Library Host Communication (hostcommlib)

Description Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

Dialog
Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies
the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

5-7

Byte Unpack

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16','double','uint8','double','single'}.

5-8

Byte Unpack

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
demonstrate entering nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

5-9

CAN Pack

Purpose Pack individual signals into CAN message

Library CAN Communication

Description

The CAN Pack block loads signal data into a message at specified
intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of input
ports is dynamic and depends on the number of signals you specify
for the block. For example, if your block has four signals, it has four
input ports.

This block has one output port, CAN Msg. The CAN Pack block takes
the specified input parameters and packs the signals into a message.

Other Supported Features

The CAN Pack block supports:

5-10

CAN Pack

• The use of Simulink® Accelerator™ mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

5-11

CAN Pack

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN Pack
block parameters.

Parameters

Data is input as
Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this
option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
input port on your block.

• manually specified signals: Allows you to specify data signal
definitions. If you select this option, use the Signals table to
create your signals. The number of input ports on your block
depends on the number of signals you specify.

5-12

CAN Pack

• CANdb specified signals: Allows you to specify a CAN
database file that contains message and signal definitions. If
you select this option, select a CANdb file. The number of input
ports on your block depends on the number of signals specified
in the CANdb file for the selected message.

5-13

CAN Pack

CANdb file
This option is available if you specify that your data is input via
a CANdb file in the Data is input as list. Click Browse to find
the appropriate CANdb file on your system. The message list
specified in the CANdb file populates the Message section of the
dialog box. The CANdb file also populates the Signals table for
the selected message.

Message list
This option is available if you specify that your data is input via a
CANdb file in the Data is input as field and you select a CANdb

5-14

CAN Pack

file in the CANdb file field. Select the message to display signal
details in the Signals table.

Message

Name
Specify a name for your CAN message. The default is CAN
Msg. This option is available if you choose to input raw data or
manually specify signals. This option in unavailable if you choose
to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the
Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive
integer from 0 through 2047 for a standard identifier and from
0 through 536870911 for an extended identifier. You can also
specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually
specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your data input, the
CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw
data or manually specify signals.

Remote frame
Specify the CAN message as a remote frame.

5-15

CAN Pack

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message data. The
start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

5-16

CAN Pack

Little-Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where byte order is in big-endian format (Motorola®). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

5-17

CAN Pack

Big-Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

• single

• double

5-18

CAN Pack

Multiplex type
Specify how the block packs the signals into the CAN message
at each timestep:

• Standard: The signal is always packed at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal is
always packed. You can specify only one Multiplexor signal
per message.

• Multiplexed: The signal is packed if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following types
and values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block packs Signal-B along with Signal-A and Signal-D in that
timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block packs Signal-C along with Signal-A and Signal-D in that
timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack
either of the Multiplexed signals in that timestep.

5-19

CAN Pack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 5-20 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 5-20 to understand how physical
values are converted to raw values packed into a message.

Min
Specify the minimum physical value of the signal. The default
value is -inf (negative infinity). You can specify any number
for the minimum value. See “Conversion Formula” on page 5-20
to understand how physical values are converted to raw values
packed into a message.

Max
Specify the maximum physical value of the signal. The default
value is inf. You can specify any number for the maximum
value. See “Conversion Formula” on page 5-20 to understand
how physical values are converted to raw values packed into a
message.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

5-20

CAN Pack

where physical_value is the value of the signal after it is saturated
using the specified Min and Max values. raw_value is the packed
signal value.

See Also CAN Unpack

5-21

CAN Unpack

Purpose Unpack individual signals from CAN messages

Library CAN Communication

Description

The CAN Unpack block unpacks a CAN message into signal data using
the specified output parameters at every timestep. Data is output as
individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number
of output ports is dynamic and depends on the number of signals you
specify for the block to output. For example, if your block has four
signals, it has four output ports.

Other Supported Features

The CAN Unpack block supports:

5-22

CAN Unpack

• The use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

5-23

CAN Unpack

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN
message unpacking parameters.

Parameters

Data to be output as
Select your data signal:

• raw data: Output data as a uint8 vector array. If you select
this option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
output port on your block.

• manually specified signals: Allows you to specify data
signals. If you select this option, use the Signals table to
create your signals message manually.

5-24

CAN Unpack

The number of output ports on your block depends on the
number of signals you specify. For example, if you specify four
signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN
database file that contains data signals. If you select this
option, select a CANdb file.

5-25

CAN Unpack

The number of output ports on your block depends on the
number of signals specified in the CANdb file. For example, if
the selected message in the CANdb file has four signals, your
block has four output ports.

CANdb file
This option is available if you specify that your data is input via a
CANdb file in the Data to be output as list. Click Browse to
find the appropriate CANdb file on your system. The messages
and signal definitions specified in the CANdb file populate the

5-26

CAN Unpack

Message section of the dialog box. The signals specified in the
CANdb file populate Signals table.

Message list
This option is available if you specify that your data is to be
output as a CANdb file in the Data to be output as list and you
select a CANdb file in the CANdb file field. You can select the
message that you want to view. The Signals table then displays
the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg.
This option is available if you choose to output raw data or
manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw
data or manually specify signals. For CANdb-specified signals,
the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer
from 0 through 2047 for a standard identifier and from 0 through
536870911 for an extended identifier. If you specify 1, the block
unpacks all messages that match the length specified for the
message. You can also specify hexadecimal values using the
hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your output data, the
CANdb file defines the length of your message. If not, this field

5-27

CAN Unpack

defaults to 8. This option is available if you choose to output raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message. The start
bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

5-28

CAN Unpack

Little-Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where the byte order is in big-endian format (Motorola). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

5-29

CAN Unpack

Big-Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

• single

• double

5-30

CAN Unpack

Multiplex type
Specify how the block unpacks the signals from the CAN message
at each timestep:

• Standard: The signal is always unpacked at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal is
always unpacked. You can specify only one Multiplexor signal
per message.

• Multiplexed: The signal is unpacked if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block unpacks Signal-B along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block unpacks Signal-C along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack
either of the Multiplexed signals in that timestep.

5-31

CAN Unpack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw
value to the physical value (signal value). See “Conversion
Formula” on page 5-33 to understand how unpacked raw values
are converted to physical values.

Offset
Specify the Offset value applied to convert the physical value
(signal value) to the unpacked raw value. See “Conversion
Formula” on page 5-33 to understand how unpacked raw values
are converted to physical values.

Min
Specify the minimum raw value of the signal. The default value
is -inf (negative infinity). You can specify any number for the
minimum value. See “Conversion Formula” on page 5-33 to
understand how unpacked raw values are converted to physical
values.

Max
Specify the maximum raw value of the signal. The default value
is inf. You can specify any number for the maximum value. See
“Conversion Formula” on page 5-33 to understand how unpacked
raw values are converted to physical values.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data
type of this port is uint32.

5-32

CAN Unpack

Output remote
Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of
this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option
adds a new output port to the block. The data type of this port
is double.

Output length
Select this option to output the length of the message in bytes.
This option adds a new output port to the block. The data type of
this port is uint8.

Output error
Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is
uint8.

Output status
Select this option to output the message received status. The
status is 1 if the block receives new message and 0 if it does not.
This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select any Output ports option, the number of output
ports on your block depends on the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value. physical_value is the
scaled signal value which is saturated using the specified Min and
Max values.

See Also CAN Pack

5-33

UDP Receive

Purpose Receive UDP packet

Library Host Communication (hostcommlib)

Linux (linuxlib)

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from the appropriate library, linuxlib or windowslib.

Description The UDP Receive block receives UDP packets from an IP network port
and saves them to its buffer. With each sample, the block output, emits
the contents of a single UDP packet as a data vector.

5-34

UDP Receive

Dialog

Local IP port
Specify the IP port number upon to receive UDP packets. This
value defaults to 25000. The value can range 1–65535.

5-35

UDP Receive

Remote IP address (0.0.0.0 to accept all)
Specify the IP address from which to accept packets. Entering a
specific IP address blocks UDP packets from any other address.
To accept packets from any IP address, enter '0.0.0.0'. This
value defaults to '0.0.0.0'.

Receive buffer size (bytes)
Make the receive buffer large enough to avoid data loss caused by
buffer overflows. This value defaults to 8192.

Maximum length for Message
Specify the maximum length, in vector elements, of the data
output vector. Set this parameter to a value equal or greater than
the data size of any UDP packet. The system truncates data that
exceeds this length. This value defaults to 255.

If you disable Output variable sized signal, the block outputs
a fixed-length output the same length as the Maximum length
for Message.

Data type for Message
Set the data type of the vector elements in the Message output.
Match the data type with the data input used to create the UDP
packets. This option defaults to uint8.

Output variable sized signal
If your model supports signals of varying length, enable the
Output variable sized signal parameter. This checkbox
defaults to selected (enabled). In that case:

• The output vector varies in length, depending on the amount of
data in the UDP packet.

• The block emits the data vector from a single unlabeled output.

If your model does not support signals of varying length, disable
the Output variable sized signal parameter. In that case:

• The block emits a fixed-length output the same length as the
Maximum length for Message.

5-36

UDP Receive

• If the UDP packet contains less data than the fixed-length
output, the difference contains invalid data.

• The block emits the data vector from theMessage output.

• The block emits the length of the valid data from the Length
output.

• The block dialog box displays the Data type for Length
parameter.

In both cases, the block truncates data that exceeds the
Maximum length for Message.

Data type for Length
Set the data type of the Length output. This option defaults to
double.

Blocking time (seconds)
For each sample, wait this length of time for a UDP packet before
returning control to the scheduler. This value defaults to inf,
which indicates to wait indefinitely.

Note This parameter appears only in the UDP Receive block from
the Target Support Package product.

Sample time (seconds)
Specify how often the scheduler runs this block. Enter a value
greater than zero. In real-time operation, setting this option to a
large value reduces the likelihood of dropped UDP messages. This
value defaults to a sample time of 0.01 s.

Output port width
Specify the width of packets the block accepts. When you design
the transmit end of the UDP communication channel, you decide
the packet width. Set this option to a value as large or larger than
any packet you expect to receive.

5-37

UDP Receive

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block. For more information, see
“New UDP Send and UDP Receive Blocks”.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
packets. The default size is 8192 bytes. Make the buffer large
enough to store UDP packets that come in while your process
reads a packet from the buffer or performs other tasks. Specifying
the buffer size prevents the receive buffer from overflowing.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block. For more information, see
“New UDP Send and UDP Receive Blocks”.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

5-38

UDP Send

Purpose Send UDP message

Library Host Communication (hostcommlib)

Linux (linuxlib)

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from the appropriate library, linuxlib or windowslib.

Description The UDP Send block transmits an input vector as a UDP message over
an IP network port.

Dialog
Box

5-39

UDP Send

IP address (255.255.255.255 for broadcast)
Specify the IP address or hostname to which the block sends
the message. To broadcast the UDP message, retain the default
value, '255.255.255.255'.

Remote IP port
Specify the port to which the block sends the message. The value
defaults to 25000, but the values range from 1–65535.

Local IP port source
To let the system automatically assign the port number, select
Assign automatically. To specify the IP port number using the
Local IP port parameter, select Specify.

Local IP port
Specify the IP port number from which the block sends the
message.

If the receiving address expects messages from a particular port
number, enter that number here.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

Note This parameter only appears in a deprecated version of the
UDP Send block. Replace the deprecated UDP Send block with a
current UDP Send block. For more information, see “New UDP
Send and UDP Receive Blocks”.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

5-40

Custom or Demo Block

Purpose Custom or demo block

Description This help topic serves as a landing page if you click the help button
for a custom or demo block. These blocks are typically undocumented
because they are not part of the standard block libraries.

To provide online help for custom blocks you create, see “Providing
Your Own Help and Demos”.

5-41

Custom or Demo Block

5-42

Index

IndexB
block recommendations 2-17
blocks

CAN Pack 5-10
CAN Unpack 5-22
use in target models 2-17

blocks to avoid in models 2-17
Byte Pack block 5-2
Byte Reversal block 5-5
Byte Unpack block 5-7

C
CAN Pack block 5-10
CAN Unpack block 5-22
Custom Demo block 5-41

E
Embedded IDE Link™

build format 2-9
code generation options 2-9

G
generate optimized code 2-9

H
heap size, set heap size 2-12

O
optimization, processor specific 2-9

P
processor configuration options

build action 2-9
overrun action 2-11

processor specific optimization 2-9

S
select blocks for models 2-17
set heap size 2-12
set stack size 2-12
stack size, set stack size 2-12

T
table of blocks to avoid in models 2-17
Target Support Package™

create Simulink® model for targeting 2-16
expected background for use 1-5

U
UDP Receive block 5-34
UDP Send block 5-39

Index-1

	toc
	Getting Started
	Product Overview
	Product Description
	Key Features

	Using this Guide
	Expected Background

	Preparing Models for Embedded Deployment
	Setting Target Preferences
	What are Target Preferences Blocks?
	Locating a Target Preferences Block
	Configuring a Target Preferences Block for a Supported Processor
	Adding a Target Preferences Block to Your Model
	Examples of Configuring Target Preferences

	Setting Configuration Parameters for Embedded IDE Link
	What are Configuration Parameters?
	Setting Model Configuration Parameters
	Real-Time Workshop Pane
	Embedded IDE Link Pane Parameters

	Working with Block Libraries
	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting
	Blocks to Avoid in Your Models

	Supported Operating Systems
	Overview
	Preparing Models to Run on Windows or Linux
	Selecting the Operating System and Scheduling Mode
	Linux-Specific Topics
	Scheduling
	Running Multirate Multitasking Executables on the Linux Developm
	Starting Eclipse IDE with root privileges

	Avoiding Lock-Up in Free-Running Multi-Rate Multi-Tasking Models

	Embedded Linux-Specific Topics
	Troubleshooting “sched_setaffinity: Bad address” Error

	Windows-Specific Topics
	Scheduling

	Block Reference
	Host CAN Blocks (canmsglib)
	Host Communication (hostcommlib)

	Blocks — Alphabetical List
	Data is input as

	Index

